
Interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model

Tomohiro Hasumi*
Department of Applied Physics, Advanced School of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku,

Tokyo 169-8555, Japan
�Received 23 December 2006; revised manuscript received 30 June 2007; published 29 August 2007�

We have numerically investigated statistical properties of the so-called interoccurrence time or the waiting
time, i.e., the time interval between successive earthquakes, based on the two-dimensional �2D� spring-block
�Burridge-Knopoff� model, selecting the velocity-weakening property as the constitutive friction law. The
statistical properties of frequency distribution and the cumulative distribution of the interoccurrence time are
discussed by tuning the dynamical parameters, namely, a stiffness and frictional property of a fault. We
optimize these model parameters to reproduce the interoccurrence time statistics in nature; the frequency and
cumulative distribution can be described by the power law and Zipf-Mandelbrot type power law, respectively.
In an optimal case, the b value of the Gutenberg-Richter law and the ratio of wave propagation velocity are in
agreement with those derived from real earthquakes. As the threshold of magnitude is increased, the interoc-
currence time distribution tends to follow an exponential distribution. Hence it is suggested that a temporal
sequence of earthquakes, aside from small-magnitude events, is a Poisson process, which is observed in nature.
We found that the interoccurrence time statistics derived from the 2D BK �original� model can efficiently
reproduce that of real earthquakes, so that the model can be recognized as a realistic one in view of interoc-
currence time statistics.
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I. INTRODUCTION

Earthquakes are complex phenomena, involving relative
motion of faults. Many fundamental problems remain elu-
sive, such as the source mechanism, a physical background,
and so forth. To elucidate the source mechanism of earth-
quakes, it is essential to ascertain the physical background of
the friction force acting on the surface of a fault. However,
the unified friction law of a fault has not yet been estab-
lished. Nowadays, some constitutive friction laws have been
proposed based on laboratory experiments �1�, e.g., the
velocity-weakening property �2,3�, the rate and state depen-
dent friction law �4�, and the slip dependent constitutive law
�5�. On the other hand, there are well-known and relevant
empirical laws �6� for earthquakes. The most familiar one is
the Gutenberg-Richter �GR� law �7�, which describes a rela-
tion between the seismic magnitude M and its frequency n as
n�10−bM, where b stands for the b value and is similar to
unity.

The time interval between successive earthquakes is often
called the interoccurrence time or waiting time. Very re-
cently, statistical properties of the interoccurrence time have
been studied �8–14�. In Southern California, the probability
density of the return time for a given xy region of size L
follows a power law �8�, which is governed by three factors
�9�: b value of the GR law, the Omori law for aftershocks
�15�, and the fractal dimension of faults. Moreover, interoc-
currence time distributions for large earthquakes exhibit both
a gamma distribution and an exponential distribution �10�.
Corral showed after examining a wide variety of global
earthquake catalogs that the probability density functions
obey a generalized gamma distribution �11�. Abe and Suzuki

found that cumulative distributions are governed by the Zipf-
Mandelbrot type power law �16�, which is equivalent to the
q-exponential distribution with q�1 �12� based on the non-
extensive statistical mechanics proposed by Tsallis �17�. Re-
cently, Saichev and Sornette demonstrated that the distribu-
tion of interoccurrence time is derived from the known laws
of the GR law and the Omori law �13,14�.

In the 1980s, Bak et al. proposed the concept of self-
organized criticality �SOC� �18,19�, according to which a
nonequilibrium open system gradually evolves into a critical
state, where a distribution of physical quantity follows the
power law. A crust is a nonequilibrium open system because
energy is supplied by plate motion and dissipated by an
earthquake. Introducing a sand-pile model involving SOC
and using the cellular automaton �CA� simulation method,
they demonstrated an empirical power law which is related
to the GR law �20�. They suggested that earthquakes can be
categorized into SOC phenomena. Inspired by their study, a
number of SOC-based earthquake models have been pro-
posed to reproduce statistical properties of earthquakes �21�.
For example, a spring-block �Burridge-Knopoff �BK�� model
�22� has been widely utilized. Based on the one-dimensional
�1D� BK model with nonlinear friction force, hereafter de-
noted by BK �original� model, Carlson and Langer showed
the power law distribution like GR law, in a restricted mag-
nitude region �23,24�. It has been shown that the power law
distribution only concerns small creeping events �25,26�.
Carlson and Langer also discussed the interoccurrence time
statistics for large earthquake events �27�. Based on the 2D
BK �original� model extended by Carlson, the magnitude dis-
tribution �28� and statistical properties of the shear stress
drops �29� were reported. This model calculation has also
been performed by the CA simulation method, from here on
referred to as the BK �CA� model, and the statistical proper-
ties of earthquakes, such as the magnitude distribution
�30–33� and the interoccurrence time statistics �34,35�, were*t-hasumi.1981@toki.waseda.jp
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discussed. Note that the 1D BK �CA� model is not a good
model for the Gutenberg-Richter law, see, for instance, Ref.
�36�. The studies of the interoccurrence time statistics based
on its modified versions were reported �37–41�. The funda-
mental difference between the BK �original� model and the
BK �CA� model is how to dissipate the friction energy; the
friction force is governed by the constitutive law for the BK
�original� model, and by the equipartition law for the BK
�CA� model. The BK �original� model still has the great ad-
vantage of involving a constitutive friction law that well-
accounts for the laboratory experiment as well as the inertia.

The BK model in itself traces back to the late 1980s. We
realize that the model simplifies the complex fault dynamics,
so that some features of the fault, such as no radiation damp-
ing and long-range interactions, are inherently neglected.
However, since the model can efficiently extract the statisti-
cal properties of earthquakes, such as the GR law and the
Omori law �42�, it has been attracted much attention. Recent
reports based on the BK �original� model have focused on
the long range stress transfer �43�, a fractal structure of faults
�44,45�, the statistical properties of the magnitude distribu-
tion and the interoccurrence time based on the rate and state
dependent constitutive law �46�, the correlation of seismicity
�47–49�, and the epicenter distance statistics �50�. However,
the comprehensive application of the 2D BK �original�
model to the statistical properties of the interoccurrence time
still remains to be done. According to the recent papers
�13,14�, the interoccurrence time statistics derived from the
modified versions of the BK model �39–42� which show the
GR law and the Omori law reproduce these statistics in na-
ture. On the other hand, in the case of the 2D BK �original�
model, whether the natural interoccurrence time statistics can
be extracted or not is still contoroversial, because this model
cannot produce aftershocks. In this study, we have attempted
to work out how the interoccurrence time statistics are influ-
enced by the variation of the major physical quantities, such
as stiffness and frictional parameters of faults, and a thresh-
old value of magnitude and by seismicity without after-
shocks. Here, we report numerical investigations on the in-
teroccurrence time statistics based on the 2D BK �original�
model by testing various dynamical parameters. These physi-
cal parameters are restricted or optimized so as to reproduce
the statistics of actual earthquakes. We also compare the sta-
tistical properties derived from this model to those from the
BK �CA� model. We show that the 2D BK �original� model
can successfully reproduce the interoccurrence time statics in
nature.

II. MODEL

In Fig. 1�a�, we schematically illustrate the 2D spring-
block model which we simulated in this study. The model is
composed of blocks, two plates, two different kinds of coil
springs, kc

x and kc
y, and a leaf spring, kp, corresponding, re-

spectively, to segments of a fault, geological plates, a com-
pression stress, and a shear stress. The fundamental idea of
the model is that earthquakes are caused by the stick-slip
motion of the fault. It is noted that this model is virtually the
same as Otsuka’s model �33� but is different from Carlson’s
�kc

x=kc
y� �28�. We assume that the slip direction of blocks is

restricted only to the y direction. The equation of motion at
site �i , j� can be written as

m
d2yi,j

dt2 = kc
x�yi+1,j + yi−1,j − 2yi,j� + kc

y�yi,j−1 + yi,j+1 − 2yi,j�

− kpyi,j − F�v +
dyi,j

dt
� , �1�

where m and yi,j are, respectively, mass and displacement of
the block and F is a dynamical force between the block and
the bottom plate.

Now we rewrite Eq. �1� into a dimensionless form. The
dimensionless dynamical friction force � is obtained as
��ẏ /v1�=F�ẏ� /F0, where F0 and v1 are the maximum fric-
tion force and the characteristic velocity, respectively. A di-
mensionless time t� and displacement Ui,j are defined by

t� = �pt = �kp/mt, Ui,j =
yi,j

D0
=

yi,j

F0/kp
.

Then the dimensionless form is

d2Ui,j

dt�2 = lx
2�Ui+1,j + Ui−1,j − 2Ui,j� + ly

2�Ui,j−1 + Ui,j+1 − 2Ui,j�

− Ui,j − ��2��� +
dUi,j

dt�
�	 , �2�

and

lx
2 =

kc
x

kp
, ly

2 =
kc

y

kp
, � =

v
D0�p

=
v

v̂
, 2� =

D0�p

v1
=

v̂
v1

,

where v̂ is the slipping velocity, being on the order of 1 m/s
in a real crust. In this work, we choose the friction force as
the velocity-weakening constitutive law which states that as
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FIG. 1. �a� 2D spring-block
model. In our calculation, the sys-
tem size is �100	25� on the �x ,y�
plane. kc

x, kc
y, and kp are spring

constants. The friction force acts
on the surface between the block
and the bottom plate. �b�
�-dependence of the nonlinear dy-
namical friction function. 
=0.01
throughout the simulation.
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the slipping velocity increases, the dynamical friction force
decreases. This constitutive law was observed in the accurate
rock fracture experiment �52�. Then, we use the dimension-
less dynamical friction force � given by

��U̇� = 
�− �,1� , U̇ = 0,

�1 − 
�

�1 + 2��U̇/�1 − 
���
, U̇ � 0. �3�

The formulation given in Eq. �3� was introduced by Carlson
et al. �25� �see Fig. 1�b��. This can be regarded as an ideal
friction function involving the stick-slip motion, so that it
has often been adopted to 1D and 2D BK �original� models

�28,29,42–45,47–50�. To exclude a back slip, �U̇i,j �0�, we

treat � as a tunable parameter when U̇=0.
The model is governed by five parameters, lx, ly, �, 
, and

�. lx and ly are dimensionless stiffness parameters in the x
and y direction, respectively. � means a decrement of the
dynamical friction force with increasing slipping velocity. 

is a stress gap between the normalized maximum friction
force �=1� and dynamical friction force ��0�. � is a dimen-
sionless loading velocity. lx and ly are related to Lame’s con-
stants,  and �, as �51�

lx
2 = ��z

�x
�2

, ly
2 =

5 + 6�

 + 2�
��z

�y
�2

, �4�

where �x, �y, and �z are infinitesimal lengths in the x, y,
and z directions, respectively. According to the experiments
�1,52�, � is positive and on the order of 100 �=1�. We can
treat � as being equal to zero, when a slip event occurs be-
cause �, in nature �10−9, is far smaller than a slipping ve-
locity of �1. This approximation ensures that no other event
takes place during an ongoing event. Obviously, � is related
to loading time and interoccurrence time. We fixed �=0.01
because we will rescale it later.

In this paper, �x=�y=�z is used with assumptions of 
=�. We solved Eqs. �2� and �3� by the fourth-order Runge-
Kutta method under a free boundary condition. A small ir-
regularity of block displacements is considered at an initial
stage of the calculation. We use a 105 order of earthquakelike
events after some period when the initial randomness does
not influence the statistical properties. Then the interoccur-
rence time statistics are systematically studied by changing lx
and ly, and by � increasing the threshold of magnitude Mc.

III. RESULTS AND DISCUSSIONS

In this model, a slip of blocks is considered as an earth-
quake. An event starts when a block begins to slip in the
direction toward +y and ends when all blocks stop slipping.
We define the interoccurrence time as the time interval be-
tween successive events. Accordingly, nth interoccurrence
time can be described as �n= tn�− tn−1� , where tn� and tn−1� are
nth and n−1th earthquake occurrence time, respectively.

A. Friction parameter � dependence

In the first performance of our simulations, we study the �
dependence of the interoccurrence time statistics. For that

purpose, the stiffness parameters lx and ly are fixed �lx=1 and
ly =�3�, and the friction parameter � is changed from 1.5 to
4.5. As a result, the mean value of the interoccurrence time,

T̄, gradually increases as � is increased; namely, T̄�1.73
��=1.5�, 2.65 ��=2.5�, 3.40 ��=3.5�, and 3.53 ��=4.5�.
The frequency distributions of the interoccurrence time for
different � are shown in Fig. 2 as a function of a scaled
interoccurrence time, ��=� / �̄, where �̄ represents character-
istic interoccurrence time and is set at 2.0 arbitrarily. We
confirmed that in the case of ��4.5, the statistical properties
do not change qualitatively. The frequency distributions of
any � exhibit a power law in the short-time region of
0.5����7. The power law exponent b� gradually decreases
as � is increased, for example, b��3.04 ��=1.5�, b��2.40
��=2.5�, b��1.96 ��=3.5�, and b��1.78 ��=4.5�. As
shown in Fig. 2, the distributions are categorized into three
types; first, in the case of �=1.5 and 2.5, the frequency of a
long interoccurrence time region of ���10 is enhanced more
than expected by the power law decay, hereafter denoted by
type A. Second, for �=4.5, the frequency becomes less than
predicted by the power law, which is referred to as type B.
Finally, for the intermediate case of �=3.5, the distribution
most closely follows the power law, which is described as
type C. It is suggested that the system undergoes a critical
state when ��3.5 because the distribution shows the power
law. We note that a critical power law has never been
achieved qualitatively using the BK �original� model,
whereas it has generally been obtained with the 2D BK �CA�
model �40�.

Now, we discuss statistical properties of cumulative dis-
tributions of the interoccurrence time upon changing �. Ac-
cording to Ref. �12�, the cumulative distributions of the in-
teroccurrence time, denoted by P�����, with earthquake data
follow the Zipf-Mandelbrot type power law,
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b'=3.04

Scaled interoccurrence time
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FIG. 2. �Color online� The frequency distributions of the in-
teroccurrence time for different � ��: �=1.5, �: �=2.5, �: �
=3.5, and �: �=4.5�. �̄ is the characteristic interoccurrence time,
with fixing lx=1 and ly =�3. b� is calculated from the slope of the
dashed line. All plots except for in the case of �=4.5 are shifted
vertically for clarity.
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P����� =
1

�1 + �����

= eq�− ��/�0�

= ��1 + �1 − q��− ��/�0��1/�1−q��+, �5�

where ��a�+�max�0,a�� and �, �, q, and �0 are positive
constants. Especially, q, �0, and eq�x� are called an entropy
index, a time-scale parameter, and the q-exponential func-
tion, respectively. eq�x� converges to an exponential function,
ex, as q→1. Figures 3�a� and 3�b� are examples of P�����
for �=2.5 and 3.5. In order to estimate an optimal �, where
the model yields or reproduces the interoccurrence time sta-
tistics in nature, we fit our numerical data to the Zipf-
Mandelbrot power law given by Eq. �5�. As a result, these
fitting parameters are estimated to be q=1.10, �0=2.26, and
�z=0.986 for �=2.5 �a� and q=1.08, �0=2.05, and �z
=0.989 for �=3.5 �b� by the least-squares method. � is a
correlation coefficient between our simulation data and the
fitting curve. For both �=2.5 and 3.5, q turns out to be
closed to unity, so we introduce a different fitting model
of the exponential distribution function described by
P�����=Ae−��/�̃. The fitting parameters evaluated are
A=0.16, �̃=5.08, and �e=0.988 for �=2.5, and A=0.18,
�̃=3.97, and �e=0.980 for �=3.5. The data demonstrate that
in the case of lx=1 and ly =�3, P����� can be best described
by the Zipf-Mandelbrot type power law, simultaneously ex-
hibiting quantitatively the nature of the real seismicity. Ad-
ditionally, P����� gives a good description of the Zipf-
Mandelbrot type power law in the case of a small b�-value,
judging from the small difference between our calculation
and an ideal distribution, around 0.5����3. We note that
the time-scale parameters, �0 and �̃, are in particular sensitive
to the variation of �, compared to the other fitting param-
eters.

B. Stiffness parameter lx and ly dependence

In the second run of our simulations, the stiffness
parameter-dependence of the interoccurrence time statistics
is investigated, whereas � is fixed at 3.5, and lx and ly are
systematically changed. We study the two different cases.
One is an isotropic case, lx= ly, and the other is an anisotropic

case, such as lx=1 and ly =�3. As a result, T̄ depends on lx

and ly, for instance, T̄�3.94 �lx= ly =1�, 2.24 �lx= ly =�3�,
0.973 �lx=�3 and ly =3�, and 2.08 �lx=�2 and ly =�5�. In Fig.
4, we display the frequency distributions for different
stiffness parameters. The b� values also depend on the stiff-
ness parameters, such as b��2.67 �lx= ly =�3�, b��3.09
�lx=�3 and ly =3�, b��2.65 �lx=�2 and ly =�5�, and
b��1.94 �lx=1 and ly =�10�. Thus we point out that among
the systematically varied stiffness parameter settings, in al-
most all cases, the frequency distributions are categorized
into type A, exhibiting a board peak in the long time region
of 10����30. This implies that quasiperiodic events occur,
which has been reported in the 1D BK �original� model
�27,47,48� and in the 2D BK �original� model �28�, except
for the case of lx= ly =1.

As shown in Fig. 5, we discuss the cumulative distribu-
tions for different stiffness parameters, such as lx= ly =�3 �a�
and lx=�3 and ly =3 �b�. The Zipf-Mandelbrot type power
law and the exponential distribution are used as distribution
functions to fit our simulation results. Then, the Zipf-

FIG. 3. �Color online� The cu-
mulative distributions of the in-
teroccurrence time for �=2.5 and
3.5 with fixing lx=1 and ly =�3. In
this figure, the dotted, solid, and
broken lines correspond, respec-
tively, to the simulation data, the
Zipf-Mandelbrot type power law
defined in Eq. �5�, and the expo-
nential distribution.
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FIG. 4. �Color online� The frequency distributions of the in-

teroccurrence time for different lx and ly ��: lx=1 and ly =�10, �:
lx=�2 and ly =�5, �: lx= ly =�3, and �: lx=�3 and ly =3�, with
�=3.5. All plots except for in the case of lx=1 and ly =�10 are
shifted vertically for clarity.
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Mandelbrot power model yields q=1.08 and �0=2.67 for �a�
and q=1.13 and �0=1.23 for �b�, giving a correlation coeffi-
cient �z=0.954 and 0.921, respectively. As for the exponen-
tial distribution, A=0.08 and �0=5.52 for �a� and A=0.017
and �0=4.46 for �b� are deduced together with �e=0.974 and
0.962, respectively, for �a� and �b�.

C. Threshold of magnitude Mc dependence

We study the magnitude-dependence of the interoccur-
rence time in order to discuss the interoccurrence time sta-
tistics for large magnitude earthquakes. In this model, we
defined a seismic moment M0 and a seismic magnitude M as
M0=�i,j

n �Ui,j and M = �log M0� /1.5, where �Ui,j is a total dis-
placement at site �i , j� during an event and n is the number of
slipping blocks �53�. One may find it unrealistic at first sight
that the seismic magnitude M can be negative. However, it is
natural in the case where n�10 because the dimensionless
displacement per block is less than unity by definition. Here,
we examine the interoccurrence time statistics by altering
Mc, using the simulation data for lx=1, ly =�3, and �=3.5. It
should be noted that the upper limit of Mc is optimized so as
to ensure sufficient data for us to evaluate the statistical prop-
erties.

For the parameter setting given above, the seismic mag-
nitude M ranges from −0.86 to 1.5. In order to keep the
statistical quantities accurate, we determined the upper limit
of Mc to be −0.60. Then, we selected −0.80, −0.75, −0.70,
−0.65, and −0.60 as suitable Mc values to test. The frequency
distributions Mc=−0.70 and −0.60 are presented in Fig. 6�a�.
The frequency of short interoccurrence times satisfying

0.5����2 gradually decreases when we increase Mc. This
indicates that small magnitude events occur successively. It
is found that the frequency distributions follow the exponen-
tial distribution for large Mc. This implies that the cumula-
tive distributions are also described by the exponential dis-
tribution. As shown in Fig. 6�b�, indeed the exponential law
does govern the cumulative distributions for large Mc. Note
that based on the 2D BK �CA� model, the distribution for
large Mc is governed by the power law �38�, which differs
from our results for the 2D BK �original� model.

We can demonstrate that the interoccurrence time statis-
tics depends on the threshold of magnitude Mc; the fre-
quency and the cumulative distributions are definitely
changed qualitatively and quantitatively as Mc is increased.
For large Mc, these distributions follow the exponential dis-
tributions. Moreover, it is found that a temporal sequence of
events, except for small magnitude events, is a Poisson pro-
cess, which is also reported using real earthquake data �10�.
We point out that the transition magnitude point can be esti-
mated to be −0.65.

D. Optimization of the model parameters and comparison
with the real seismicity

Now, we compare the interoccurrence time statistics ob-
tained from our model with that observed in nature in order
to confirm our model is realistic in view of extracting the
interoccurrence time statistics of an actual earthquake. Here,
the dynamical parameters are tuned so as to extract the sta-
tistical properties of earthquakes as clearly as possible. As
displayed in Table I, the optimal parameters are estimated to

FIG. 5. �Color online� The cu-
mulative distributions of the in-
teroccurrence time for lx= ly =�3
in �a� and lx=�3 and ly =3 in �b�,
while � is fixed to be 3.5. In this
figure, the dotted, solid, and bro-
ken lines correspond, respectively,
to the simulation data, the Zipf-
Mandelbrot type power law de-
fined in Eq. �5�, and the exponen-
tial distribution.

FIG. 6. �Color online� The in-
teroccurrence time statistics in-
creasing the threshold of magni-
tude Mc, for lx=1, ly =�3, and �
=3.5 ��: Mc=−0.70 and �: Mc

=−0.60�. The solid line corre-
sponds to the exponential distribu-
tion. The frequency and cumula-
tive distributions are in �a� and in
�b�, respectively.
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be lx=1, ly =�3, and �=3.5. It is noted that the exponent b�
in nature is similar to unity because this value is related to
the Omori law as b�=2− �1/ p� �54�, where p characterizes
the Omori law. Our findings are in agreement with real data
semiquantitatively because the b� value is greater than 1.

We display the cumulative distribution of interoccurrence
time for Southern California and Japan overlapped in our
simulation data in the case of the optimal parameters,
namely, lx=1, ly =�3, and �=3.5 in Fig. 7�b�. It is remarked
that in order to compare the statistical properties, we used the
data from �12� and then we rescaled the interoccurrence time
by �̄=1000 s. It is found that the cumulative distributions
also qualitatively satisfied those of real seismicity, the Zipf-
Mandelbrot type power law. As can be seen from Figs. 3�b�
and 7�b�, there appears a small but distinguishable difference
between our numerical data and the Zipf-Mandelbrot power
law in the region of 0.4����4. When the b� value gradu-
ally decreases, our data of P����� become closed to the
Zipf-Mandelbrot type power law. If the model reproduced
the Omori law, corresponding to b��1.2, we could obtain
realistic interoccurrence time. Therefore to obtain more real-

istic interoccuurence time statistics, we need to select a
model which reproduces the Omori law as well as the GR
law.

Finally, we discuss other remaining statistical properties,
such as b value of the GR law and the ratio of the seismic
waves. We calculate the b value from the slope of the power
law magnitude distribution. The results are listed in Table. I.
As for the optimal parameters, lx=1, ly =�3, and �=3.5, the
b value is similar to unity, which is consistent with the b
value in nature. As already described, lx and ly are defined,
respectively, as �kc

x /kp and �kc
y /kp. Here, we can rewrite

them into lx=� kc
x/m

kp/m and ly =� kc
y/m

kp/m . lx and ly correspond, re-
spectively, to the secondary wave �S wave� and the primary
wave �P wave� because in the x and y directions, the oscil-
lation direction of blocks is, respectively, perpendicular to
and parallel to the wave propagation direction. The velocities
of the P wave and S wave in real crust are close to 7 and
4 km/h, respectively, so that a real observation gives
ly / lx�1.7. For lx=1 and ly =�3, the ratio ly / lx well coincides
with that of the real earthquakes. Although for other cases,
e.g., lx=�2 and ly =�5, and lx=�3 and ly =3, the ratio is again

TABLE I. Summary of the interoccurrence time statistics based on the 2D BK �original� model and on the real seismicity.

lx ly �
Frequency

distributiona
Cumulative
distributionb b value P wave/S wave

1 �3 1.5 Type A Power law �1.57 1.7

1 �3 2.5 Type A Exponential law �1.15 1.7

1 �3 3.5 Type C Power law �1.00 1.7

1 �3 4.5 Type B Power law �0.88 1.7

1 1 3.5 Type B Power law �1.11 1.0
�3 �3 3.5 Type A Exponential law �1.54 1.0
�2 �5 3.5 Type A Exponential law �1.31 1.6
�3 3 3.5 Type A Exponential law �1.37 1.7

Real data Type C Power law �12� �1.0 1.7

aAs we mentioned before the frequency distributions are categorized as three types, namely, type A, type B, and type C.
bTwo test distribution functions are introduced, namely the Zipf-Mandelbrot power law and the exponential distribution denoted here the
power law and exponential law, respectively.
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similar to 1.7, the correlation coefficient is found to be worse
than that of lx=1 and ly =�3. Therefore we found that the b
value of the GR law and the ratio of seismic waves satisfy
those of earthquakes in nature in the case of optimal param-
eters �lx=1, ly =�3, and �=3.5� which derived from the in-
teroccurrence time statistics.

E. System size dependence

We study the size-dependence of the interoccurrence time
statistics. For this purpose, the system size, N, is varied from
625 �25	25� to 22 500 �150	150�, with fixing lx=1, ly

=�3, and �=3.5. In this case, the model reproduces a real-
istic b value and the interoccurrence time statistics.

We display the interoccurrence time statistics for different
system sizes, N, in Fig. 8. As clearly be seen from Fig. 8�a�,
the frequency distribution shows the power law in the region
of 1����20 with an exponent, b��2.07, 2.16, 2.18, and
2.16 for N=625, 2500, 10 000, and 22 500, respectively. This
shows that the statistical property of the distribution, the
power-law exponent b�, converges, for N�2500. On the
other hand, the maximum interoccurrence time gradually in-
creases when N is increased. It is shown in Fig. 8�b� that the
cumulative distributions do not depend on N, in the region of
0.1����10, whereas it is found that the tail of the distribu-
tions becomes stretched for large N. By fitting the data to the
Zipf-Mandelbrot power law given in Eq. �5�, the optimal
fitting parameters are obtained: q=1.04 and �0=2.34 for N
=625, q=1.06 and �0=2.55 for N=2500, q=1.11 and �0

=2.48 for N=10 000, and q=1.15 and �0=2.10 for N
=22 500. The correlation coefficient, �, between our numeri-
cal result and the ideal curve is found to be 0.989, 0.986,
0.989, and 0.970 for N=625, 2500, 10 000, and 22 500, re-
spectively. The result manifests that the statistical properties
of P����� remain virtually unchanged for N�22 500.
Therefore we conclude that the interoccurrence time statis-
tics hold up when 2500�N�10 000. It should be noted that

in our numerical simulation, the system size, N, is set at
2500, where the size-dependence is negligible.

IV. CONCLUSION

In light of our numerical investigations based on the 2D
BK �original� model, the interoccurrence time statistics de-
pends on the dynamical parameters, stiffness, lx and ly, and
frictional properties of a fault, �. Then we are able to restrict
or optimize the dynamical parameters so as to reproduce of
the interoccurrence time statistics in nature; the frequency
distribution shows the power law and the cumulative distri-
bution reveals the Zipf-Mandelbrot type power law. Addi-
tionally, we demonstrate that the interoccurrence time distri-
butions follow the exponential distributions for large Mc, so
that a temporal sequence of earthquakes, except for small-
magnitude earthquakes, is reduced to a Poisson process. We
have found that the 2D BK �original� model with the optimal
parameters lx=1, ly =�3, and �=3.5 can be recognized as a
realistic model for earthquakes in view of its fine reproduc-
tion of the major statistical properties of earthquakes, such as
the interoccurrence time statistics, b value of the GR law,
and the ratio of the seismic waves. We conclude that the 2D
BK �original� model is sufficient to extract the realistic in-
teroccurrence time statistics without employing the BK �CA�
model that assumes an unrealistic friction law and no inertia.
The present results underlie the advantages of the 2D BK
�original� model for its extensive application to other me-
chanical systems involving stick-slip behavior.
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